Início Ciência Falta matéria no Universo (e ninguém sabe onde está)

Falta matéria no Universo (e ninguém sabe onde está)

COMPARTILHAR

Astrónomos sondaram halos cheios de gás ao redor de galáxias, numa missão para encontrar material “desaparecido” que deveria aí residir, mas acabaram de mãos vazias. Afinal, onde está a matéria em falta no Universo?

Toda a matéria no Universo existe na forma de matéria “normal” ou na forma de matéria escura, notoriamente elusiva e invisível. Esta última é cerca de seis vezes mais prolífica.

Curiosamente, os cientistas que estudam galáxias próximas descobriram, nos últimos anos, que estas contêm três vezes menos matéria normal do que o esperado. Aliás, a nossa própria galáxia, a Via Láctea, contém menos de metade da quantidade esperada.

“Isto tem sido um mistério há já muito tempo, e os cientistas empenharam muito esforço à procura dessa matéria em falta,” afirma Jiangtao Li, da Universidade de Michigan, Estados Unidos, autor principal do novo artigo científico, publicado recentemente na The Astrophysical Journal Letters.

“Porque é que não está nas galáxias – ou está lá, mas não a conseguimos ver? Se não está lá, onde está? É importante resolver este enigma, pois é uma das partes mais incertas dos nossos modelos, tanto do Universo primitivo quanto de como as galáxias se formam”, acrescenta.

Em vez de estar dentro da massa principal da galáxia – a matéria que pode ser observada oticamente – os investigadores pensaram que poderia estar numa região de gás quente que se estende para o espaço para formar o halo de uma galáxia.

Estes halos esféricos e quentes foram detetados antes, mas a região é tão fraca que é difícil observar em detalhe – a sua emissão de raios-X pode perder-se e ser indistinguível da radiação de fundo. Frequentemente, os cientistas observam uma pequena distância nessa região e extrapolam as suas descobertas, mas isto pode dar azo a resultados pouco claros e variados.

Jiangtao e os seus colegas queriam medir o gás quente a distâncias maiores, usando o observatório espacial XMM-Newton da ESA. Analisaram seis galáxias espirais semelhantes e combinaram os dados para criar uma galáxia com as suas propriedades médias.

“Ao fazer isso, o sinal da galáxia torna-se mais forte e o fundo de raios-X comporta-se melhor,” acrescenta o coautor Joel Bregman, também da Universidade de Michigan. “Fomos então capazes de ver a emissão de raios-X cerca de três vezes mais longe, o que tornou a nossa extrapolação mais precisa e confiável.”

Galáxias espirais massivas e isoladas oferecem a melhor oportunidade de procurar por matéria perdida. Estas galáxias são maciças o suficiente para aquecer o gás a temperaturas de milhões de graus.

Além disso, emitem raios-X e evitam, em grande parte, a contaminação por outros materiais por meio da formação de estrelas ou de interações com outras galáxias.

Ainda desaparecida

Os resultados da equipa mostraram que o halo em torno das galáxias, como as que foram observadas, não pode conter todo o material que falta. Apesar de extrapolar para quase 30 vezes o raio da Via Láctea, quase três-quartos do material esperado ainda estava em falta.

Existem outras teorias alternativas principais sobre onde a matéria poderá estar: ou se encontra armazenada noutra fase gasosa que é mal observada – talvez uma fase mais quente e mais ténue ou uma fase mais fria e mais densa – ou dentro de um trecho do espaço que não é coberto pelas nossas observações atuais, ou ainda emite raios-X demasiado fracos para serem detetados.

De qualquer forma, uma vez que as galáxias não contêm material em falta suficiente, podem tê-lo ejetado para o espaço, talvez impulsionadas por injeções de energia de estrelas em explosão ou por buracos negros supermassivos.

“Este trabalho é importante para ajudar a criar modelos de galáxias mais realistas e, por sua vez, ajudar-nos a entender melhor como a nossa própria Galáxia se formou e evoluiu,” sublinha Norbert Schartel, cientista do projeto XMM-Newton da ESA. “Este tipo de descoberta não é possível sem a incrível sensibilidade do XMM-Newton.”

“No futuro, os cientistas poderão adicionar ainda mais galáxias às nossas amostras de estudo e utilizar o XMM-Newton em colaboração com outros observatórios de alta energia, como o futuro Telescópio Avançado da ESA para Astrofísica de Alta Energia, Athena, para sondar partes densas das orlas externas de uma galáxia, enquanto continuamos a desvendar o mistério da matéria desaparecida do Universo”, conclui.

Fonte: ZAP

DEIXE UMA RESPOSTA

Please enter your comment!
Please enter your name here

sixteen + 16 =